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Graded modules

Given a commutative ring k, a graded k-module M = M∗ or
M = M∗ means sequence of k-modules Mn or Mn. In practise we
will always have Mn = 0 or Mn = 0 whenever n < 0 so M is
connective. We will usually drop the word graded!
If x ∈ Mn or x ∈ Mn then n is the degree of x and we set |x | = n.
It is useful to view an ungraded k-module N as graded with
N0 = N = N0 and Nn = 0 = N0 whenever n ̸= 0.
We can form tensor products of such graded modules by setting

(M ⊗k N)n =
⊕
i

Mi ⊗k Nn−i

and so on. We usually write ⊗ for ⊗k.

There is a switch isomorphism T : M ⊗ N
∼=−−→ N ⊗M for which

T(x ⊗ y) = (−1)|x | |y |y ⊗ x .
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A (connected) k-algebra A∗ or A∗ is a connective k-module with
A0 = k or A0 = k, and a k-linear product φ : A⊗ A −→ A, i.e., a
sequence k-homomorphisms Ai ⊗ Aj −→ Ai+j , fitting into some
commutative diagrams.

A⊗ A⊗ A

φ⊗Id

{{

Id⊗φ

##
A⊗ A

φ
##

A⊗ A

φ
{{

A

k⊗ A

η⊗Id

��

A
∼=oo

Id

��

∼= // A⊗ k

Id⊗η
��

A⊗ A

φ
��

A⊗ A

φ
��

A

Here the unit homomorphism η : k −→ A is the inclusion of k as
A0 or A0. A is commutative if the following diagram commutes.

A⊗ A

φ
""

T
∼=

// A⊗ A

φ
||

A

Thus an algebra consists of (A, φ, η) subject to various
commutative diagrams. We often set

xy = φ(x ⊗ y).
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Coalgebras

The dual notion is that of a (connected) coalgebra, which is a
triple (C , ψ, ε), with C a connected k-module, ψ : C −→ C ⊗ C ,
and ε : C −→ k trivial except in degree n = 0 in which case it is an
isomorphism, and this data fits into some commutative diagrams.

C ⊗ C ⊗ C88
ψ⊗Id

ff
Id⊗ψ

C ⊗ Cff

ψ

C ⊗ C88

φ

C

k⊗ COO
ε⊗Id

C//
∼=

OO

Id

oo
∼=

C ⊗ kOO
Id⊗ε

C ⊗ Caa

ψ

C ⊗ C==

ψ

C

If the following diagram commutes then C is cocommutative.

C ⊗ Ccc

ψ

T
∼=

// C ⊗ C;;

ψ

C
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Examples

Let x have degree d ∈ N. Then the free k-algebra k⟨x⟩ has
k⟨x⟩kd = k⟨x⟩kd = k{xk},

and is trivial in degrees not divisible by d . The free commutative
k-algebra k[x ] is the quotient algebra k⟨x⟩/(x2 − (−1)dxd). When
char k = 2, k[x ] = k⟨x⟩, but if 2 ∈ k× and d is odd,
k[x ] = k⟨x⟩/(x2) is an exterior algebra. This generalises to free
commutative algebras on collections of elements xα of positive
degrees. If all generators are in even degrees then we get a
polynomial algebra

k[xα : α] =
⊗
α

k[xα],

if they are all in odd degrees then we get an exterior algebra

k[xα : α] = Λk(xα : α).

The free algebra on a collection of elements yβ is built out of the
tensor powers of the free module Y = k{yβ : β}.
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For some basic coalgebras, we can take an indeterminate y of even
degree 2d and C = k[y ]. For ψ : C −→ C ⊗ C take the Binomial
coproduct

ψ(yk) =
k∑

i=0

(
k

i

)
y i ⊗ yk−i ,

and also set ε(yk) = 0k .
For a more interesting version, take C2k = k{y [k]} and the Leibnitz
coproduct

ψ(y [k]) =
k∑

i=0

y [i ] ⊗ y [k−i ].

If char k = 0 then we can think of y [k] as yk/k!, but the above
makes sense for any k.
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Hopf algebras

Suppose that (A, φ, η) is an algebra and (A, ψ, ε) is a coalgebra.
Then (A, φ, η, ψ, ε) is a Hopf algebra if either of the following
holds:

I (A, φ, η) is commutative and ψ, ε are algebra homomorphisms;

I (A, ψ, ε) is cocommutative and φ, η are coalgebra
homomorphisms.

Note that in the first case φ, η are algebra homomorphisms, while
in the second, ψ, ε are coalgebra homomorphisms. Here the tensor
product of algebras A1,A2 is given the product

(A1 ⊗ A2)⊗ (A1 ⊗ A2)
∼=−→ (A1 ⊗ A1)⊗ (A2 ⊗ A2)

φ1⊗φ2−−−−→ A1 ⊗ A2

and similarly for coalgebras. So these notions are even more
symmetric than might appear. The Hopf algebra is called
bicommutative if both algebra and coalgebra structures are
commutative.
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If A is a commutative algebra or a commutative coalgebra, the
connectivity assumption forces the existence of an antipode
χ : A −→ A which is an involution that is both an algebra and a
coalgebra anti-isomorphism making the following diagram
commutative.

A
ψ

||
ε

��

ψ

""
A⊗ A

χ⊗Id

��

A⊗ A

Id⊗χ

��

k

η

��

A⊗ A

φ
""

A⊗ A

φ
||

A
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The symmetric function Hopf algebra

Take generators cn ∈ Symm2n and form the polynomial algebra
Symm = k[cn : n > 1]. Notice that the free module k{cn : n > 0}
is also a cocommutative coalgebra with the Leibnitz coproduct.

Theorem
Symm is the free bicommutative Hopf algebra generated by the
cocommutative coalgebra k{cn : n > 0}.
Define the dual of Symm by taking the k-linear dual

Symmn = Homk(Symmn, k)

and taking the adjoints φ∗, ψ∗ to be the compositions

Symm∗ ⊗ Symm∗
∼=−−→ Homk(Symm⊗ Symm, k)

ψ†
−−→ Homk(Symm, k) = Symm∗,

Symm∗ = Homk(Symm, k) φ†
−−→ Homk(Symm⊗ Symm, k)

∼=−−→ Symm∗ ⊗ Symm∗.
Andrew Baker University of Glasgow/MSRI Polynomial Hopf algebras in Algebra & Topology



We also define η∗ = ε† and ε∗ = η†. Then (Symm∗, φ
∗, η∗, ψ∗, ε∗)

is a bicommutative Hopf algebra.

Theorem
There is an isomorphism of Hopf algebras Symm∗ ∼= Symm∗, hence
Symm∗ is self dual.

Corollary

Symm∗ is a polynomial algebra.
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Under this isomorphism Symm∗ ∼= Symm∗, let cn ↔ bn. We can
also try to understand elements of Symm∗ in terms of duality. If we
use the monomial basis c r11 · · · c rℓℓ then the dual of the monomial
ck1 is bn, while the dual of the indecomposable cn is an element qn
which satisfies ψ∗(qn) = qn ⊗ 1 + 1⊗ qn so it is primitive. In fact
the primitive module in degree 2n is generated by qn,

Pr Symm2n = k{qn}

and the Newton recurrence formula is satisfied:

qn = b1qn−1 − b2qn−1 + · · ·+ (−1)n−2bn−1q1 + (−1)n−1nbn.

Under the isomorphism there is also a primitive sn in Symm2n.
There is a self dual basis consisting of Schur functions Sµ(c1, . . .)
which are dual to the Sµ(b1, . . .). The sn and qn are special cases
of these.
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The structure of Symm is sensitive to the ring k. For example, if
k = Q, there is a decomposition of Hopf algebras

Symm∗ =
⊗
n>1

Q[sn].

Let p be a prime and let k = Fp or k = Z(p). There is a
decomposition of Hopf algebras

Symm∗ =
⊗
p-m

B[2m],

where
B[2m] = k[am,r : r > 0]

is an indecomposable polynomial Hopf algebra and

smpr = pram,r + pr−1apm,r−1 + · · ·+ pap
r−1

m,1 + ap
r

m,0.

This connection with Witt vectors leads to Symm being viewed as
the big Witt vector Hopf algebra.
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Occurrences of Symm in nature

One interpretation of Symm2n is as the k-module of homogeneous
symmetric functions of degree n in k indeterminates ti where
k > n. It is a classical result that this is correct and then cn
corresponds to the elementary function

∑
t1 · · · tn, while sn

corresponds to the power sum
∑

tn1 .

We can also identify Symm2n with the representation/character
ring of the symmetric group Σn, R(Σn) under addition. Then
R =

⊕
n>0R(Σn) has a Hopf algebra structure agreeing with that

of Symm and it is also self dual under inner product of characters.

In Algebraic Topology, Symm∗ appears as H∗(BU; k), the
cohomology ring of the classifying space BU. The coproduct is
induced from the map BU × BU −→ BU classifying direct
summand of vector bundles. Here cn is the universal n-th Chern
class and the coproduct is equivalent to the Cartan formula.
Dually, Symm∗ = H∗(BU; k).
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A non-commutative analogue

Starting with the Leibnitz cocommutative coalgebra k{zn : n > 0}
where |zn| = 2n. We can form the free algebra generated by the zn
with n > 1, NSymm∗ = k⟨zn : n > 1⟩. It has a basis consisting of
ordered monomials zr1 · · · zrℓ . The Leibnitz coproduct extends, e.g.,

ψ∗(zmzn) =
∑
i ,j

zizj ⊗ zm−izn−j .

The counit is given by ε∗(zk) = 0 if k > 0 and ε∗(z0) = ε∗(1) = 1.

Theorem
NSymm∗ is a cocommutative Hopf algebra.

The ring of quasi-symmetric functions QSymm∗ is the dual,
QSymmn = Homk(NSymmn, k).
Theorem
QSymm∗ is a commutative Hopf algebra.

Ditters Conjecture ca 1972: QSymm∗ is a polynomial ring. (First
apparently correct proof by Hazewinkel 2000).
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The product in QSymm is complicated. If we denote by [r1, . . . , rℓ]
the dual to the monomial zr1 · · · zrℓ then products involve
overlapping shuffles. For example,

[1, 2][3] = [1, 2, 3] + [1, 3, 2] + [3, 1, 2] + [1, 2 + 3] + [1 + 3, 2]

= [1, 2, 3] + [1, 3, 2] + [3, 1, 2] + [1, 5] + [4, 2].

In NSymm∗ there are many primitives in each degree. For example,

q′n = z1q
′
n−1 − z2q

′
n−1 + · · ·+ (−1)n−2zn−1q

′
1 + (−1)n−1nzn,

q′′n = q′′n−1z1 − q′′n−1z2 + · · ·+ (−1)n−2q′′1zn−1 + (−1)n−1nzn,

define two different families of primitives. This makes it difficult to
understand the indecomposables in QSymm∗.
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Topology to the rescue!

In fact, these Hopf algebras appear in topological disguise:

NSymm∗
∼= H∗(ΩΣCP∞), QSymm∗ ∼= H∗(ΩΣCP∞).

Theorem (Topological proof: Baker & Richter 2006)

H∗(ΩΣCP∞;Z) is polynomial.

I will outline an approach to proving this which differs from the
original one but extends to many other examples in a uniform way.
To simplify things I’ll only concentrate on the case of a field k, the
most interesting example being k = Fp for a prime p. The rational
case is easy and we have a local to global argument for the case
k = Z.
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The Eilenberg-Moore spectral sequence

Let k be a field and write H∗(−) = H∗(−; k). We also need to
assume that X is simply connected.

Theorem
There is a second quadrant Eilenberg-Moore spectral sequence of
k-Hopf algebras (E∗,∗

r , dr ) with differentials

dr : E
s,t
r −→ Es+r ,t−r+1

r

and
Es,t
2 = Tors,tH∗(X )(k, k) =⇒ Hs+t(ΩX ).

The grading conventions here give

Tors,∗H∗(X ) = Tor
H∗(X )
−s,∗

in the standard homological grading.
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When k = Fp for a prime p, this spectral sequence admits
Steenrod operations. We will denote the mod p Steenrod algebra
by A∗ = A(p)∗.

Theorem
If H∗(−) = H∗(−;Fp) for a prime p, then the Eilenberg-Moore
spectral sequence is a spectral sequence of A∗-Hopf algebras.

We will apply this spectral sequence in the case when X = ΣCP∞.
The cohomology ring H∗(ΣCP∞; k) has trivial products. This is
always true for a suspension, but can hold more generally. We also
have for n > 1,

Hn+1(ΣCP∞; k) ∼= Hn(CP∞; k),

and
H∗(CP∞; k) = k[x ]

with x ∈ H2(CP∞; k).
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Theorem
There is an isomorphism of Hopf algebras

Tor∗,∗H∗(ΣCP∞) = B∗(H∗(ΣCP∞)),

where B∗(H∗(ΣCP∞)) denotes the bar construction with

B−s(H∗(ΣCP∞)) = (H̃∗(ΣCP∞))⊗s

for s > 0. The coproduct

ψ : B−s(H∗(ΣCP∞)) −→
s⊕

i=0

B−i (H∗(ΣCP∞))⊗ Bi−s(H∗(ΣCP∞))

is the standard one for which

ψ([u1| · · · |us ]) =
s∑

i=0

[u1| · · · |ui ]⊗ [ui+1| · · · |us ].
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Corollary

The Eilenberg-Moore spectral sequence of the Theorem collapses
at the E2-term.

Here are two more observations on this spectral sequence.

Lemma
The edge homomorphism e : E−1,∗+1

2 −→ H∗(ΩΣCP∞) can be
identified with the composition

H∗+1(ΣCP∞)
ev∗−−→ H∗+1(ΣΩΣCP∞)

∼=−→ H∗(ΩΣCP∞)

using the canonical isomorphism E−1,∗+1
2

∼=−→ H∗+1(ΣCP∞).

Corollary

The edge homomorphism e : E−1,∗+1
2 −→ H∗(ΩΣCP∞) is a

monomorphism.

To obtain information about products in H∗(ΩΣCP∞) we will
make use of Steenrod operations.
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We sketch the argument for k = F2 and set H∗(−) = H∗(−;F2).
We will use the isomorphism Hk+1(ΣCP∞) ∼= Hk(CP∞) to
identify an element Σy ∈ Hk+1(ΣCP∞) with y ∈ Hk(CP∞).

Theorem
H∗(ΩΣCP∞) is a polynomial algebra.
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Proof
Consider [Σxk+1] ∈ E−1,2k+3

2 . The Steenrod operation Sq2k+2

satisfies

Sq2k+2[Σxk+1] = [Sq2k+2(Σxk+1)]

= [Σx2k+2] ̸= 0.

So the element of H∗(ΩΣCP∞) represented in the spectral
sequence by [Σxk+1] has non-trivial square represented by
Sq2k+2[Σxk+1] = [Σx2k+2] ̸= 0. More generally, using the
description of the E2-term in the Theorem above, we can similarly
see that all elements represented in the E2-term are non-nilpotent.
Thus the algebra generators of H∗(ΩΣCP∞) are not nilpotent, so
by Borel’s theorem we can deduce that H∗(ΩΣCP∞) is a
polynomial algebra.
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