Polynomial Hopf algebras in Algebra & Topology

Andrew Baker University of Glasgow/MSRI

UC Santa Cruz Colloquium

6th May 2014

last updated 07/05/2014

Graded modules

Given a commutative ring k, a graded k-module $M = M_*$ or $M = M^*$ means sequence of k-modules M_n or M^n . In practise we will always have $M_n = 0$ or $M^n = 0$ whenever n < 0 so M is connective. We will usually drop the word graded! If $x \in M_n$ or $x \in M^n$ then n is the degree of x and we set |x| = n. It is useful to view an ungraded k-module N as graded with $N_0 = N = N^0$ and $N_n = 0 = N^0$ whenever $n \neq 0$. We can form tensor products of such graded modules by setting

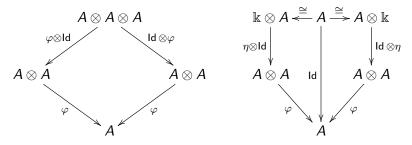
$$(M \otimes_{\Bbbk} N)_n = \bigoplus_i M_i \otimes_{\Bbbk} N_{n-i}$$

and so on. We usually write \otimes for \otimes_{\Bbbk} .

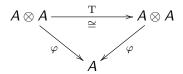
There is a switch isomorphism $T: M \otimes N \xrightarrow{\cong} N \otimes M$ for which

$$\mathrm{T}(x\otimes y)=(-1)^{|x|\,|y|}y\otimes x.$$

A (connected) \Bbbk -algebra A_* or A^* is a connective \Bbbk -module with $A_0 = \Bbbk$ or $A^0 = \Bbbk$, and a \Bbbk -linear product $\varphi \colon A \otimes A \longrightarrow A$, i.e., a sequence \Bbbk -homomorphisms $A_i \otimes A_j \longrightarrow A_{i+j}$, fitting into some commutative diagrams.

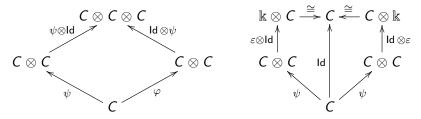


Here the unit homomorphism $\eta \colon \Bbbk \longrightarrow A$ is the inclusion of \Bbbk as A_0 or A^0 . A is commutative if the following diagram commutes.

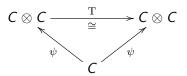


Coalgebras

The *dual* notion is that of a (*connected*) *coalgebra*, which is a triple (C, ψ, ε) , with C a connected k-module, $\psi: C \longrightarrow C \otimes C$, and $\varepsilon: C \longrightarrow k$ trivial except in degree n = 0 in which case it is an isomorphism, and this data fits into some commutative diagrams.



If the following diagram commutes then C is cocommutative.



Examples

Let x have degree $d \in \mathbb{N}$. Then the *free* \Bbbk -*algebra* $\Bbbk \langle x \rangle$ has

$$\mathbb{k}\langle x\rangle_{kd} = \mathbb{k}\langle x\rangle^{kd} = \mathbb{k}\{x^k\},$$

and is trivial in degrees not divisible by *d*. The *free commutative* \Bbbk -algebra $\Bbbk[x]$ is the quotient algebra $\Bbbk\langle x \rangle/(x^2 - (-1)^d x^d)$. When char $\Bbbk = 2$, $\Bbbk[x] = \Bbbk\langle x \rangle$, but if $2 \in \Bbbk^{\times}$ and *d* is odd, $\Bbbk[x] = \Bbbk\langle x \rangle/(x^2)$ is an *exterior algebra*. This generalises to free commutative algebras on collections of elements x_{α} of positive degrees. If all generators are in even degrees then we get a *polynomial algebra*

$$\Bbbk[x_{\alpha}:\alpha] = \bigotimes_{\alpha} \Bbbk[x_{\alpha}],$$

if they are all in odd degrees then we get an exterior algebra

$$\Bbbk[\mathbf{x}_{\alpha}:\alpha] = \Lambda_{\Bbbk}(\mathbf{x}_{\alpha}:\alpha).$$

The *free algebra* on a collection of elements y_{β} is built out of the tensor powers of the free module $Y = \mathbb{k}\{y_{\beta} : \beta\}$. Andrew Baker University of Glasgow/MSRI Polynomial Hopf algebras in Algebra & Topology For some basic coalgebras, we can take an indeterminate y of even degree 2d and $C = \Bbbk[y]$. For $\psi \colon C \longrightarrow C \otimes C$ take the *Binomial coproduct*

$$\psi(y^k) = \sum_{i=0}^k \binom{k}{i} y^i \otimes y^{k-i},$$

and also set $\varepsilon(y^k) = 0^k$.

For a more interesting version, take $C_{2k} = \mathbb{k}\{y^{[k]}\}$ and the Leibnitz coproduct

$$\psi(\mathbf{y}^{[k]}) = \sum_{i=0}^{k} \mathbf{y}^{[i]} \otimes \mathbf{y}^{[k-i]}.$$

If char $\mathbb{k} = 0$ then we can think of $y^{[k]}$ as $y^k/k!$, but the above makes sense for any \mathbb{k} .

Hopf algebras

Suppose that (A, φ, η) is an algebra and (A, ψ, ε) is a coalgebra. Then $(A, \varphi, \eta, \psi, \varepsilon)$ is a Hopf algebra if either of the following holds:

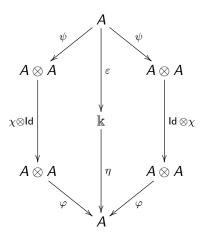
- (A, φ, η) is commutative and ψ, ε are algebra homomorphisms;
- (A, ψ, ε) is cocommutative and φ, η are coalgebra homomorphisms.

Note that in the first case φ, η are algebra homomorphisms, while in the second, ψ, ε are coalgebra homomorphisms. Here the tensor product of algebras A_1, A_2 is given the product

$$(A_1 \otimes A_2) \otimes (A_1 \otimes A_2) \xrightarrow{\cong} (A_1 \otimes A_1) \otimes (A_2 \otimes A_2) \xrightarrow{\varphi_1 \otimes \varphi_2} A_1 \otimes A_2$$

and similarly for coalgebras. So these notions are even more symmetric than might appear. The Hopf algebra is called *bicommutative* if both algebra and coalgebra structures are commutative.

If A is a commutative algebra or a commutative coalgebra, the connectivity assumption forces the existence of an *antipode* $\chi: A \longrightarrow A$ which is an involution that is both an algebra and a coalgebra anti-isomorphism making the following diagram commutative.



The symmetric function Hopf algebra

Take generators $c_n \in \text{Symm}^{2n}$ and form the polynomial algebra $\text{Symm} = \Bbbk[c_n : n \ge 1]$. Notice that the free module $\Bbbk\{c_n : n \ge 0\}$ is also a cocommutative coalgebra with the Leibnitz coproduct.

Theorem

Symm is the free bicommutative Hopf algebra generated by the cocommutative coalgebra $\mathbb{k}\{c_n : n \ge 0\}$. Define the *dual* of Symm by taking the k-linear dual

$$\operatorname{Symm}_n = \operatorname{Hom}_{\Bbbk}(\operatorname{Symm}^n, \Bbbk)$$

and taking the adjoints φ_*,ψ_* to be the compositions

$$\begin{array}{l} \mathsf{Symm}_*\otimes\mathsf{Symm}_*\stackrel{\cong}{\longrightarrow}\mathsf{Hom}_\Bbbk(\mathsf{Symm}\otimes\mathsf{Symm},\Bbbk)\\ &\stackrel{\psi^{\dagger}}{\longrightarrow}\mathsf{Hom}_\Bbbk(\mathsf{Symm},\Bbbk)=\mathsf{Symm}_*,\\\\ \mathsf{Symm}_*=\mathsf{Hom}_\Bbbk(\mathsf{Symm},\Bbbk)\stackrel{\varphi^{\dagger}}{\longrightarrow}\mathsf{Hom}_\Bbbk(\mathsf{Symm}\otimes\mathsf{Symm},\Bbbk)\\ &\stackrel{\cong}{\longrightarrow}\mathsf{Symm}_*\otimes\mathsf{Symm}_*\end{array}$$

We also define $\eta * = \varepsilon^{\dagger}$ and $\varepsilon^* = \eta^{\dagger}$. Then $(\text{Symm}_*, \varphi^*, \eta^*, \psi^*, \varepsilon^*)$ is a bicommutative Hopf algebra.

Theorem

There is an isomorphism of Hopf algebras $Symm^* \cong Symm_*$, hence $Symm^*$ is self dual.

Corollary

Symm_{*} is a polynomial algebra.

Under this isomorphism Symm^{*} \cong Symm_{*}, let $c_n \leftrightarrow b_n$. We can also try to understand elements of Symm_{*} in terms of duality. If we use the monomial basis $c_1^{r_1} \cdots c_{\ell}^{r_{\ell}}$ then the dual of the monomial c_1^k is b_n , while the dual of the indecomposable c_n is an element q_n which satisfies $\psi_*(q_n) = q_n \otimes 1 + 1 \otimes q_n$ so it is primitive. In fact the primitive module in degree 2n is generated by q_n ,

$$\Pr{Symm_{2n}} = \Bbbk{q_n}$$

and the Newton recurrence formula is satisfied:

$$q_n = b_1 q_{n-1} - b_2 q_{n-1} + \cdots + (-1)^{n-2} b_{n-1} q_1 + (-1)^{n-1} n b_n.$$

Under the isomorphism there is also a primitive s_n in Symm²ⁿ. There is a self dual basis consisting of Schur functions $S_{\mu}(c_1,...)$ which are dual to the $S_{\mu}(b_1,...)$. The s_n and q_n are special cases of these. The structure of Symm is sensitive to the ring k. For example, if $k = \mathbb{Q}$, there is a decomposition of Hopf algebras

$$\mathsf{Symm}^* = \bigotimes_{n \ge 1} \mathbb{Q}[s_n].$$

Let p be a prime and let $\mathbb{k} = \mathbb{F}_p$ or $\mathbb{k} = \mathbb{Z}_{(p)}$. There is a decomposition of Hopf algebras

$$\operatorname{Symm}^* = \bigotimes_{p \nmid m} \operatorname{B}[2m],$$

where

$$\mathbf{B}[2m] = \Bbbk[a_{m,r} : r \ge 0]$$

is an indecomposable polynomial Hopf algebra and

$$s_{mp^r} = p^r a_{m,r} + p^{r-1} a_{m,r-1}^p + \dots + p a_{m,1}^{p^{r-1}} + a_{m,0}^{p^r}$$

This connection with Witt vectors leads to Symm being viewed as the *big Witt vector* Hopf algebra.

Occurrences of Symm in nature

One interpretation of Symm²ⁿ is as the k-module of homogeneous symmetric functions of degree n in k indeterminates t_i where $k \ge n$. It is a classical result that this is correct and then c_n corresponds to the elementary function $\sum t_1 \cdots t_n$, while s_n corresponds to the power sum $\sum t_1^n$.

We can also identify Symm²ⁿ with the representation/character ring of the symmetric group Σ_n , $R(\Sigma_n)$ under addition. Then $R = \bigoplus_{n \ge 0} R(\Sigma_n)$ has a Hopf algebra structure agreeing with that of Symm and it is also self dual under inner product of characters.

In Algebraic Topology, Symm^{*} appears as $H^*(BU; \Bbbk)$, the cohomology ring of the classifying space BU. The coproduct is induced from the map $BU \times BU \longrightarrow BU$ classifying direct summand of vector bundles. Here c_n is the universal *n*-th Chern class and the coproduct is equivalent to the Cartan formula. Dually, Symm_{*} = $H_*(BU; \Bbbk)$.

A non-commutative analogue

Starting with the Leibnitz cocommutative coalgebra $\mathbb{k}\{z_n : n \ge 0\}$ where $|z_n| = 2n$. We can form the free algebra generated by the z_n with $n \ge 1$, NSymm_{*} = $\mathbb{k}\langle z_n : n \ge 1 \rangle$. It has a basis consisting of ordered monomials $z_{r_1} \cdots z_{r_\ell}$. The Leibnitz coproduct extends, e.g.,

$$\psi_*(z_m z_n) = \sum_{i,j} z_i z_j \otimes z_{m-i} z_{n-j}.$$

The counit is given by $\varepsilon_*(z_k) = 0$ if k > 0 and $\varepsilon_*(z_0) = \varepsilon_*(1) = 1$. Theorem

NSymm_{*} is a cocommutative Hopf algebra.

The ring of quasi-symmetric functions $QSymm^*$ is the dual, $QSymm^n = Hom_{\Bbbk}(NSymm_n, \Bbbk)$.

Theorem

QSymm^{*} is a commutative Hopf algebra.

Ditters Conjecture ca 1972: QSymm* is a polynomial ring. (First apparently correct proof by Hazewinkel 2000).

The product in QSymm is complicated. If we denote by $[r_1, \ldots, r_\ell]$ the dual to the monomial $z_{r_1} \cdots z_{r_\ell}$ then products involve *overlapping shuffles*. For example,

$$\begin{split} [1,2][3] &= [1,2,3] + [1,3,2] + [3,1,2] + [1,2+3] + [1+3,2] \\ &= [1,2,3] + [1,3,2] + [3,1,2] + [1,5] + [4,2]. \end{split}$$

In NSymm_{*} there are many primitives in each degree. For example,

$$\begin{aligned} q'_n &= z_1 q'_{n-1} - z_2 q'_{n-1} + \dots + (-1)^{n-2} z_{n-1} q'_1 + (-1)^{n-1} n z_n, \\ q''_n &= q''_{n-1} z_1 - q''_{n-1} z_2 + \dots + (-1)^{n-2} q''_1 z_{n-1} + (-1)^{n-1} n z_n, \end{aligned}$$

define two different families of primitives. This makes it difficult to understand the indecomposables in QSymm^{*}.

In fact, these Hopf algebras appear in topological disguise:

```
\operatorname{NSymm}_* \cong H_*(\Omega\Sigma\mathbb{C}\mathrm{P}^\infty), \quad \operatorname{QSymm}^* \cong H^*(\Omega\Sigma\mathbb{C}\mathrm{P}^\infty).
```

```
Theorem (Topological proof: Baker & Richter 2006)
H^*(\Omega\Sigma\mathbb{CP}^\infty;\mathbb{Z}) is polynomial.
```

I will outline an approach to proving this which differs from the original one but extends to many other examples in a uniform way. To simplify things I'll only concentrate on the case of a field \Bbbk , the most interesting example being $\Bbbk = \mathbb{F}_p$ for a prime p. The rational case is easy and we have a local to global argument for the case $\Bbbk = \mathbb{Z}$.

The Eilenberg-Moore spectral sequence

Let \Bbbk be a field and write $H^*(-) = H^*(-; \Bbbk)$. We also need to assume that X is simply connected.

Theorem

There is a second quadrant Eilenberg-Moore spectral sequence of \Bbbk -Hopf algebras ($\mathbb{E}_{r}^{*,*}, d_{r}$) with differentials

$$d_r \colon \mathrm{E}^{s,t}_r \longrightarrow \mathrm{E}^{s+r,t-r+1}_r$$

and

$$\mathrm{E}_{2}^{s,t} = \mathrm{Tor}_{H^{*}(X)}^{s,t}(\Bbbk, \Bbbk) \Longrightarrow H^{s+t}(\Omega X).$$

The grading conventions here give

$$\operatorname{\mathsf{Tor}}_{H^*(X)}^{s,*} = \operatorname{\mathsf{Tor}}_{-s,*}^{H^*(X)}$$

in the standard homological grading.

When $\mathbb{k} = \mathbb{F}_p$ for a prime p, this spectral sequence admits Steenrod operations. We will denote the mod p Steenrod algebra by $\mathcal{A}^* = \mathcal{A}(p)^*$.

Theorem

If $H^*(-) = H^*(-; \mathbb{F}_p)$ for a prime p, then the Eilenberg-Moore spectral sequence is a spectral sequence of \mathcal{A}^* -Hopf algebras.

We will apply this spectral sequence in the case when $X = \Sigma \mathbb{C}P^{\infty}$. The cohomology ring $H^*(\Sigma \mathbb{C}P^{\infty}; \Bbbk)$ has trivial products. This is always true for a suspension, but can hold more generally. We also have for $n \ge 1$,

$$H^{n+1}(\Sigma \mathbb{C}\mathrm{P}^{\infty}; \mathbb{k}) \cong H^{n}(\mathbb{C}\mathrm{P}^{\infty}; \mathbb{k}),$$

and

$$H^*(\mathbb{C}\mathrm{P}^\infty; \Bbbk) = \Bbbk[x]$$

with $x \in H^2(\mathbb{C}\mathrm{P}^\infty; \Bbbk)$.

Theorem

There is an isomorphism of Hopf algebras

$$\operatorname{\mathsf{Tor}}_{H^*(\Sigma \mathbb{C}\mathrm{P}^\infty)}^{*,*} = \mathrm{B}^*(H^*(\Sigma \mathbb{C}\mathrm{P}^\infty)),$$

where $B^*(H^*(\Sigma \mathbb{C}P^{\infty}))$ denotes the bar construction with

$$\mathrm{B}^{-s}(H^*(\Sigma \mathbb{C}\mathrm{P}^\infty)) = (\widetilde{H}^*(\Sigma \mathbb{C}\mathrm{P}^\infty))^{\otimes s}$$

for $s \ge 0$. The coproduct

$$\psi \colon \mathrm{B}^{-s}(H^*(\Sigma \mathbb{C}\mathrm{P}^\infty)) \longrightarrow \bigoplus_{i=0}^{s} \mathrm{B}^{-i}(H^*(\Sigma \mathbb{C}\mathrm{P}^\infty)) \otimes \mathrm{B}^{i-s}(H^*(\Sigma \mathbb{C}\mathrm{P}^\infty))$$

is the standard one for which

$$\psi([u_1|\cdots|u_s])=\sum_{i=0}^s [u_1|\cdots|u_i]\otimes [u_{i+1}|\cdots|u_s].$$

Andrew Baker University of Glasgow/MSRI

Polynomial Hopf algebras in Algebra & Topology

Corollary

The Eilenberg-Moore spectral sequence of the Theorem collapses at the E_2 -term.

Here are two more observations on this spectral sequence.

Lemma

The edge homomorphism $e \colon E_2^{-1,*+1} \longrightarrow H^*(\Omega \Sigma \mathbb{C} P^\infty)$ can be identified with the composition

$$H^{*+1}(\Sigma \mathbb{C}\mathrm{P}^{\infty}) \xrightarrow{\mathrm{ev}^*} H^{*+1}(\Sigma \Omega \Sigma \mathbb{C}\mathrm{P}^{\infty}) \xrightarrow{\cong} H^*(\Omega \Sigma \mathbb{C}\mathrm{P}^{\infty})$$

using the canonical isomorphism $\mathrm{E}_2^{-1,*+1} \xrightarrow{\cong} H^{*+1}(\Sigma \mathbb{C}\mathrm{P}^\infty).$

Corollary

The edge homomorphism $e \colon E_2^{-1,*+1} \longrightarrow H^*(\Omega \Sigma \mathbb{C} P^{\infty})$ is a monomorphism.

To obtain information about products in $H^*(\Omega\Sigma\mathbb{C}\mathrm{P}^\infty)$ we will make use of Steenrod operations.

We sketch the argument for $\mathbb{k} = \mathbb{F}_2$ and set $H^*(-) = H^*(-; \mathbb{F}_2)$. We will use the isomorphism $H^{k+1}(\Sigma \mathbb{C}P^{\infty}) \cong H^k(\mathbb{C}P^{\infty})$ to identify an element $\Sigma y \in H^{k+1}(\Sigma \mathbb{C}P^{\infty})$ with $y \in H^k(\mathbb{C}P^{\infty})$.

Theorem $H^*(\Omega\Sigma\mathbb{C}\mathrm{P}^\infty)$ is a polynomial algebra.

Proof Consider $[\Sigma x^{k+1}] \in E_2^{-1,2k+3}$. The Steenrod operation Sq^{2k+2} satisfies

$$Sq^{2k+2}[\Sigma x^{k+1}] = [Sq^{2k+2}(\Sigma x^{k+1})]$$
$$= [\Sigma x^{2k+2}] \neq 0.$$

So the element of $H^*(\Omega\Sigma\mathbb{C}P^{\infty})$ represented in the spectral sequence by $[\Sigma x^{k+1}]$ has non-trivial square represented by $\operatorname{Sq}^{2k+2}[\Sigma x^{k+1}] = [\Sigma x^{2k+2}] \neq 0$. More generally, using the description of the E₂-term in the Theorem above, we can similarly see that all elements represented in the E₂-term are non-nilpotent. Thus the algebra generators of $H^*(\Omega\Sigma\mathbb{C}P^{\infty})$ are not nilpotent, so by Borel's theorem we can deduce that $H^*(\Omega\Sigma\mathbb{C}P^{\infty})$ is a polynomial algebra.